
Topologically massive gauge theories and their dual factorized gauge-invariant formulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F979

(http://iopscience.iop.org/1751-8121/40/46/F01)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/46
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F979–F986 doi:10.1088/1751-8113/40/46/F01

FAST TRACK COMMUNICATION

Topologically massive gauge theories and their dual
factorized gauge-invariant formulation

Bruno Bertrand1 and Jan Govaerts2,3,4,5

1 Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucléaire,
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Abstract
There exists a well-known duality between the Maxwell–Chern–Simons theory
and the ‘self-dual’ massive model in (2 + 1) dimensions. This dual description
may be extended to topologically massive gauge theories (TMGT) for forms
of arbitrary rank and in any dimension. This communication introduces the
construction of this type of duality through a reparametrization of the ‘master’
theory action. The dual action thereby obtained preserves the full gauge
symmetry structure of the original theory. Furthermore, the dual action is
factorized into a propagating sector of massive gauge-invariant variables and
a decoupled sector of gauge-variant variables defining a pure topological field
theory. Combining the results obtained within the Lagrangian and Hamiltonian
formulations, a completed structure for a gauge-invariant dual factorization of
TMGT is thus achieved.

PACS numbers: 11.15.−q, 11.10.Ef, 11.10.Kk

1. Introduction

A manifest realization of the gauge invariance principle implies that the original fields used
to define any gauge theory do not generate physical configurations, since these fields are
not gauge-invariant degrees of freedom. As a matter of fact, two general approaches to
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isolate genuine physical degrees of freedom are available. The first involves some gauge-
fixing procedure in order to effectively remove the contributions of redundant gauge-variant
degrees of freedom. However such gauge fixings usually suffer Gribov problems, except in
some exceptional cases. The second approach consists of constructing a factorized dual
formulation. Indeed, following a convenient redefinition of the gauge fields within the
Lagrangian formulation, gauge-variant degrees of freedom are decoupled from the physical
ones. There exists quite a number of examples of gauge theories where this kind of technique
has been developed (and which is sometimes referred to as a ‘dual projection’ [1, 2]). The main
difficulty arising for such a programme is the rare existence of such reparametrizations while
at the same time being local and conserving the number of degrees of freedom. Moreover,
field redefinitions within the covariant Lagrangian formulation are not necessarily associated
with equivalent canonical transformations within the corresponding Hamiltonian formulation
while preserving at each step gauge invariance.

Actually, the covariant extension from the Hamiltonian formulation to the Lagrangian
first-order field theory turns out to be trivial in the infrared limit, namely when only the global
sector of zero momentum modes is retained. In that case, any factorization or soldering
technique is associated with a corresponding canonical transformation within the Hamiltonian
formulation. However this feature does not necessarily survive for field theories. As an
example, the soldering that fuses self-dual and anti-self-dual Lagrangians into the Maxwell–
Chern–Simons–Proca theory cannot be associated with a canonical transformation within
the Hamiltonian formulation [3], although it is the case in the infrared limit [4]. However,
as is to be discussed presently, topologically massive gauge theories (TMGT) in which a
topological term preserving exact gauge invariance generates a mass gap, do not encounter
such restrictions. Through a local and linear field redefinition within the first-order Lagrangian
formulation, or the associated canonical transformation within the Hamiltonian formulation,
the dual action possesses the same gauge symmetry structure as the original theory and is
factorized into a propagating sector of massive physical variables and a decoupled sector with
gauge-variant variables defining a pure topological field theory (TFT, for a review see [5]).

In the following section, it is shown that in (2+1) dimensions the canonical transformation
introduced in [6] within the Hamiltonian formulation is complementary to a dual projection
for the Lagrangian first-order formulation of the Maxwell–Chern–Simons theory [2]. In the
same way, the covariant extension of the factorization identified within their Hamiltonian
formulation [6] leads to a dual projection for topologically massive gauge theories in any
dimension and for all tensorial ranks, which has not been considered previously. These results
hence provide a complete understanding of a novel general structure for TMGT, referred to as
‘topological-physical’ (TP) factorization, which involves both the Lagrangian and Hamiltonian
formulations.

2. Dual factorization of the MCS theory

A topological Chern–Simons term generates mass [7] for a propagating spin one vector field
A of which the Lagrangian density reads,

LMCS = − 1

4e2
FµνF

µν +
1

4
κεµνρFµνAρ, (1)

where the field scaling parameter e is real while κ is a real multiplicative constant. The
reduction of a ‘master’ Lagrangian [8] accounts for the common origin of both the MCS
and ‘self-dual’ Lagrangians [9]. The master Lagrangian is the first-order form of the MCS
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Lagrangian after the introduction of gauge-invariant auxiliary fields fµ, readily reducible
through Gaussian integration,

L2+1
master = 1

2e2fµf µ + 1
4εµνρFµν(2fρ + κAρ). (2)

However, to a certain extent the reduction of the master Lagrangian as introduced in [8] is
analogous to a procedure of gauge fixing. Indeed, the reduction of gauge-variant variables
within the Lagrangian formulation is analogous to the resolution of the associated first-class
‘Gauss’ constraint within the Hamiltonian formulation.

In contradistinction to the master Lagrangian method [8], the dual factorized theory is
constructed through a local and linear field redefinition, hence of a field-independent path-
integral Jacobian, leading to a redefinition of the master action Smaster[A, f ] → SSD[E,A],
namely

Eµ(Aµ, fµ) = fµ, Aµ(Aµ, fµ) = 1

κ
fµ + Aµ. (3)

This transformation resulting from the Lorentz covariant extension of the phase-space
canonical transformation introduced in [6] is equivalent to that used in [2] and so the dual
projection technique is recovered. Note that this field redefinition is well defined provided
only the topological mass parameter κ is non-vanishing, κ �= 0. Upon reduction through
Gaussian integration, the gauge-invariant variables Eµ are found to correspond to the electric
and magnetic field components,

Ei ≡ εijE
j

elec, E0 ≡ Bmag.

Consequently, a coherent reparametrization of configuration space is achieved. In fact, it
factorizes the action into two decoupled contributions,

L2+1
fact = LSD[Eµ, ∂µEν] + LCS[Aµ, ∂µAν].

In deriving this expression, a total surface term mixing the two field variables has been ignored,
since it does not contribute for any appropriate choice of boundary conditions. It may, however,
play a role when the quantum field theory is defined on a manifold with boundaries.

The physical self-dual part LSD consists of Proca and topological mass terms,

LSD = 1

2
e2EµEµ − 1

2κ
εµνρ∂µEνEρ.

This part describes a single propagating spin one free excitation of mass m = h̄κe2 and violates
parity. The second part LCS consists of gauge-variant variables defining a purely topological
Chern–Simons theory,

LCS = 1
2κεµνρ∂µAνAρ.

This last part, already expected within the path-integral quantization approach [10], is absent
from the dual Lagrangian when the master action method [8] is used in which case all the
topological content inherited from the original Chern–Simons term is lost. In particular,
non-trivial topological features become manifest in the presence of external sources, or when
the space manifold � has non-trivial topology (see [11] and references therein). It is also
noteworthy to mention that in the infrared limit dual projection techniques bring to the fore
the existence of the Z2 quantum anomaly of topological origin [4, 12].

As far as the local part of the theory is concerned, the fact that the pure Chern–Simons
theory describes gauge fields of flat connection implies, in combination with (3), that

κεµνρ∂µAν = κεµνρ∂µAν + εµνρ∂µfν ≈ 0.

One recovers of course the condition for the reduction of the master action in [8], but in the
present approach this condition is required as a weak constraint preserving the gauge content
between the original and dual formulations.
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3. Dual factorization of general TMGT

The equivalence between gauge non-invariant first-order mass generating theories for any
p-form and TMGT has so far been shown in diverse dimensions through the Hamiltonian
embedding due to Batalin, Fradkin and Tyutin (BFT), either partial [13] or complete [14],
through the covariant gauge embedding method [15, 16] within the Lagrangian formulation,
through the master action [17], etc. All methods developed so far share a common
characteristic, namely that, in fact, the dual action does not possess the same gauge symmetry
content as the original formulation. Hence at the quantum level, the equivalence between
the two dual formulations applies only for pure theories defined on space manifolds of trivial
topology.

The dual factorization approach of this communication readily applies to topological mass
generation in any dimension and for all tensorial ranks. Given a real-valued p-form field A

in �p(M) and a (d − p)-form field B in �d−p(M) over a (d + 1)-dimensional spacetime
manifold M endowed with a Lorentzian metric structure, the general action for TMGT reads

S[A,B] =
∫
M

σp

2e2
F ∧ ∗F +

σd−p

2g2
H ∧ ∗H + κ

∫
M

(1 − ξ)F ∧ B − σpξA ∧ H, (4)

where σ = (−1). The arbitrary real and dimensionless variable ξ introduced in order to
parametrize any possible surface term is physically irrelevant for an appropriate choice of
boundary conditions on M. The field scaling parameters e and g are real. The action (4)
is invariant under two independent classes of finite Abelian gauge transformations acting
separately on either the A or B fields,

A′ = A + α, B ′ = B + β, (5)

where α and β are, respectively, closed p- and (d − p)-forms, while the derived quantities
F = dA and H = dB are the gauge-invariant field strengths of A and B, respectively. The
last term in (4) is a topological ‘BF ’ coupling between the two dynamical fields A and B. In
(3 + 1) dimensions, one recovers the Cremmer–Scherk action [18].

In order to construct the dual factorized action of TMGT, the original action (4) must be
written in its first-order form after the introduction of gauge-invariant auxiliary (d − p)- and
p-form fields f and h, respectively,

Smaster = e2

2
(f)2 +

g2

2
(h)2 +

∫
M

F ∧ f + H ∧ h + κ

∫
M

(1 − ξ)F ∧ B − σpξA ∧ H. (6)

In (6), the inner product on �k(M) × �k(M) is defined as

(ωk, ηk) =
∫
M

ωk ∧ ∗ηk,

with the convenient notation (ωk)
2 = σd+1−k(ωk, ωk). A simple local and linear transformation

in the master action (6) of field-independent path-integral Jacobian and inducing the
redefinition Smaster[A,B, f, h] → Sfact[E,G,A,B], namely

E = f, A = A − 1

κ
σp(d−p)h,

G = h, B = B +
1

κ
f,

(7)

enables the factorization of the theory into two decoupled sectors,

Sfact[E,G,A,B] = Sdyn[E,G] + SBF [A,B]. (8)
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Once again this transformation is well defined provided the topological coupling κ does not
vanish. The two total divergences mixing the variables A and B with E and G, respectively,
are again parametrized by ξ .

The first contribution Sdyn[E,G] consisting of dynamical gauge-invariant variables reads
as

Sdyn = e2

2
(E)2 +

g2

2
(G)2 +

1

κ

∫
M

σd−pξE ∧ dG − (1 − ξ) dE ∧ G. (9)

The gauge-independent ‘self-dual’ action generalized to any dimension of [16, 17] is recovered.
Depending on the value of the parameter ξ , the Proca action for a p- or (d − p)-form field is
then readily identified through Gaussian integration. Indeed, by setting ξ = 1 and integrating
out the then Gaussian auxiliary (d − p)-form field E, one derives the action of a p-form
field G of mass m = h̄µ, with µ = κeg. Alternatively, one may also obtain the action of a
(d − p)-form field E of mass m = h̄µ, by fixing ξ = 0 and eliminating the Gaussian p-form
field G.

The second contribution SBF [A,B] to the dual factorized action (8) involves gauge-variant
variables transforming as follows under the original Abelian gauge symmetries (5),

A′ = A + α, B′ = B + β, (10)

and defines, in fact, once again a pure topological field theory of the BF type,

SBF = κ

∫
M

(1 − ξ)F ∧ B − σpξA ∧ H,

where F = dA and H = dB. This decoupled TFT sector thus ensures that the gauge structure
of the original theory is preserved through dual factorization. Moreover, as in the MCS case,
the presence of this topological term, so far hardly evoked in the literature for very particular
types of TMGT [19], has dramatic consequences. First, as described in [6] within the context
of canonical quantization, this term controls the degeneracy of the physical spectrum of the
original TMGT through topological invariants of the space manifold when it is of non-trivial
topology. Second, this topological term could be of prime importance for theories where the
p-form fields are connections coupled to extended objects carrying the associated relevant
charges.

The transformation (7) is nothing other than the Lorentz covariant extension, in
combination with the expressions for conjugate momenta, of the canonical transformation
in the phase space of the original TMGT within their Hamiltonian formulation, as recently
introduced in [6]. This covariant generalization emphasizes the universal character of the
topological-physical factorization, whatever the formulation of the theory, hence leading to
the following general and completed structure:

Lagrangian
of TMGT (4)

Legendre transform
⇐⇒

Constraints analysis

Hamiltonian
of TMGT


 Auxiliary fields
Master

Lagrangian

 Canonical

transformation

 Factorization

Factorized
Lagrangian(8)

Legendre transform
⇐⇒

Constraints analysis

Factorized
Hamiltonian [6]
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At first sight the introduction of the first-order form of the action (4) and thus the extension
of the configuration space by auxiliary Gaussian fields seems artificial. As a matter of fact,
to express directly the fields of the original Lagrangian formulation of TMGT as explicit
functions of those of its dual formulation (8) turns out to be impossible because the two
formulations do not possess the same numbers of degrees of freedom. Although the two
formulations describe the same physics, there are extra auxiliary degrees of freedom in the
dual formulation. Therefore, a convenient Lagrangian must be chosen among those leading
to the same constrained Hamiltonian [20]. The convenient formulation is the first-order
one (6) for which the comparison with the dual formulation is readily achieved from the
local and linear transformation (7). This transformation simply redistributes the degrees of
freedom, conserving the number of auxiliary fields and maintaining the gauge structure of
the theory. In [6], where the dual topological-physical factorization was achieved within the
Hamiltonian formulation, all second-class constraints are being reduced using Dirac brackets.
Therefore, the two phase spaces possess already the same number of degrees of freedom
at any given spacetime point and dualization is directly achieved. The first-order form
of TMGT makes manifest the relation between the covariant field redefinitions within the
Lagrangian formulation and the associated canonical transformations within the Hamiltonian
formulation.

4. Conclusion

The possibility of the factorization introduced in this communication is intimately related to
the fact that TMGT generate a mass gap. Indeed within the Hamiltonian formulation this
mass gap involves the non-trivial dynamical global (or ‘zero-mode’) sector (which carries
the structure of harmonic oscillators). It is then possible to factorize phase space through
a canonical transformation which is obviously local, using the mass-gap parameter µ [6].
In this communication, this change of variables has been extended in a manifestly Lorentz
covariant way by considering the first-order form of the original Lagrangian of TMGT. In
comparison to other methods developed so far in the literature, the technique consisting in
constructing the dual action for TMGT by a local and linear redefinition of the fields is, firstly,
much more direct and, secondly, preserves the gauge symmetry content of the original action,
while at each step maintaining manifest Lorentz covariance. In this sense, this type of dual
projection method enables to isolate the physical content of the theory in a gauge-invariant
way, the entire gauge-variant contributions residing only in the second sector of the action
which reduces to a pure topological field theory. The relevance of our conclusions for general
TMGT is confirmed by some results already achieved for particular types of TMGT within
the path-integral framework [10, 19].

The appearance of this topological sector which ensures that the gauge symmetry content
is maintained, has very intriguing consequences when TMGT are defined on topologically
non-trivial manifolds [6] or are coupled to matter fields, whether of a fermionic or a bosonic
character, since non-trivial topological effects then arise. The coupling to matter fields
is currently under investigation. One result of interest established so far is that in the
symmetry breaking phase, the effective Abelian Maxwell–Higgs Lagrangian is equivalent
to a particular form of TMGT coupled to a real scalar ‘Higgs’ field in a very specific
way [21].

Topological-physical factorization is the archetype of a more ambitious project whose
basic ideas were suggested in a heuristic way in [22]. If this kind of technique is to turn out to
be applicable to large classes of gauge-invariant theories generating a mass gap, it may offer
perspectives in the development of new approximation schemes for non-perturbative dynamics.
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In particular, it would be of great interest to understand whether similar considerations could
apply to matter fields coupled to Yang–Mills theories in order to isolate the low-energy physical
configurations coupled to the condensates of matter states which reside in the zero-mode
sector.
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